Preparing WL-LSMS for First Principles
Thermodynamics Calculations on Accelerator and
Multicore Architectures

»

((5 OAK RIDGE LEADERSHIP COMPUTING FaciL TY \

Oak Ridge National Laboratory

Markus Eisenbach

X U.S. DEPARTMENT OF

(@) ENERGY

Motivation

* Density Functional Calculations have proven to be a useful tool to study the
ground state of many materials.

* For finite temperatures the situation is less ideal an one is often forced to rely
on model calculation with parameters either fitted to first principles calculations or
experimental results.

* Fitting to models is especially unsatisfactory in inhomogeneous systems,
nanoparticles or other systems where the model parameters could vary
significantly from one site to another.

Solution:
Combine First Principles calculations with statistical mechanics methods

Thermodynamic Observables

o Thermodynamic observables are related to the
partition function Z and free energy F

Z(ﬁ) _ Z e BHAE:})
{&i}
F(T) = —kpTIn Z(1/kpT)

e If we can calculate Z() thermodynamic
observables can be calculated as logarithmic
derivatives.

Wang-Landau Method

Conventional Monte Carlo methods calculate
expectation values by sampling with a weight given by
the Bolzmann distribution

In the Wang-Landau Method we rewrite the partition
function in terms of the density of states which is
calculated by this algorithm

Z(8) = Ze—ﬁH({&:}) = o /g(E)e_ﬁEdE
{&:}

To derive an algorithm to estimate g(E) we note that
states are randomly generated with a probabillity
proportional to 1/g(E) each energy interval is visited with
the same frequency (flat histogram)

Metropolis Method Wand-Landau Method

Metropolis et al, JCP 21, 1087 (1953) Wang and Landau, PRL 86, 2050 (2001)

/[= /e_E[X]/kBTdX 7 = /W(E)e_E/kBTdE
Compute partition function ana If configurations are accepted with
other averages with probability 1/W all energies are visited

configurations that are weighted equally (flat histogram)
with a Boltzmann factor
Sample configuration where Boltz- 1. Begin with prior estimate, eg W'(E) = 1

mann factor is large. | N
2. Propose move, accepted with probability

1. Select configuration . , ,
Air= 1, W'(E;)/ W' (E
. p = min{1, W/(E;)/W'(Ey)}
2. Modify configuration (move) 3. If move accepted increase DOS
By = Elxy] W'(Ep) = W'(Eg) x f f>1

3. Accept move with probability 4. lterate 2 & 3 until histogram is flat
A;_ ;= min{1,e’Fi~F)Y 5 Reduce f — f = +/f andgo back to 1

Not quite embarrassingly parallel

Metropolis MC acceptance: A F = min{ 1, P Li—FEy) }

random walker 1/\ANW

andom walker ZN/\—/V\/

Not quite embarrassingly parallel

Metropolis MC acceptance: A F = min{ 1, P Li—FEy) }

Wang-Landau acceptance:

Az—>f — miﬂ{l, ea(wa(xf)_wa(xi)}

random walker 1/\ANW

I I I I . .« global update of joint DOS at every MC step

andom walker ZN/\—/\/\/

Not quite embarrassingly parallel

Metropolis MC acceptance: A F = min{ 1, P Li—FEy) }

Wang-Landau acceptance:

Az—>f — min{l, 6a(wa(a:f)—wa(a:‘i)}

random walker 1WW

I I I I ... global update of joint DOS at every MC step

random walker 2W/\/

/ limited by latency ~ microseconds

local calculation of energy and observable ~ millisecond to minutes

Organization of the WL-LSMS code using a
master-slave approach

Nearsightedness and the locally self-consistent
multiple scattering (LSMS) method

® Nearsightedness of electronic
OOOOOOQ mermion
PNAS 102, 11635 (20095)
Q Q Q Q Q Q Q - Local electronic properties such
as density depend on effective
Q Q potential only at nearby points.
® Locally self-consistent multiple
scattering method - Wang et
al., PRL 75, 2867 (1999)

- Solve Kohn-Sham equation on a
cluster of a few atomic shells
around atom for which density is
computed

- Solve Poisson equation for
entire system - long range of
bare coulomb interaction

00000
OOO0OO

Q@OOC

QOO
9/00/®
QOO0

QOO
QOO

A parallel implementation and scaling of the LSMS method:
perfectly scalable at high performance

232 O—0—©

OLOOOOC
00000
OO

90-00
00000
00000

O

*Need only block i of 7

(H5) = (42
*Calculation dominated
by ZGEMM

*Sustained performance
similar to Linpack

Refactoring LSMS 1 to LSMS_3

e LSMS 1 assumes one atom / MPI rank
e But: This might not be ideal with current and future
multicore CPU
* Highly impractical for accelerators (CPUs)

* Increase flexibility of the code to adapt to new architectures
and new physics

* Reduce the amount of code that needs to be rewritten
* (This is essentially a one person effort)

e LSMS 1:
Fortran (mainly 77) for LSMS
C++ for Wang-Landau

LSMS_3

* Multiple atoms / MPI rank
e possibility for multithreading (OpenMP) in LSMS
* enable efficient use of accelerators

* New (less rigid) input file format
* Retain Wang-Landau part form LSMS _ 1

e LSMS 3:
Top level routines and data structures: C++
New communication routines: C++
Many compute routines from LSMS_1: Fortran

LSMSSystemParameters lsms;
LSMSCommunication comm;
CrystalParameters crystal;
LocalTypeInfo local;
// Initialize communication and accelerator
// Read the input file

communicateParameters(comm, lsms,crystal);

local.setNumLocal (distributeTypes(crystal,comm)) ;
local.setGlobalId(comm.rank,crystal);

buildLIZandCommLists (comm,lsms,crystal,local);
loadPotentials(comm, lsms,crystal, local);

setupVorpol (lsms,crystal,local,sphericalHarmonicsCoeficients);
calculateCoreStates(comm, lsms, local);

energyContourIntegration(comm,lsms,local);
calculateChemPot (comm, lsms, local,eband);

a0 &GOLCFe e e e

Multiple Atoms / MPI rank

An important step to enable efficient use of multicore and accelerator architectures: Allow
for more work / MPI rank!

In LSMS: multiple atoms / MPI rank
necessitates new communication pattern

for all atoms ¢ in the crystal do
build the local interaction zone LIZ; =
{Jldist(x;,x;) < ry17) of atom i
for all atoms 5 in LIZ; do
add atom 5 to the list R; of data to receive for
atom ¢ (tmatFrom)
add atom ¢ to the list S; of data to send from
atom j (tmatTo)
end for
end for
remove duplicate entries from S; and R;

QLOOOOC
00000
00000
00000
00000
00000
OO

e @&@OLCFe e e e ;

Multiple Atoms / MPI rank

Matrix<Complex> tmatStore;

local
® 6 o o

t matrices needed for building the
local tau matrices

Building the tau matrices:

(1) Prepost receives for remote t matrices

(2) Loop over all local atom (OpenMP)
calculate local t matrices

(3) Send local t matrices

(4) wait for completion of communication

expectTmatCommunication(comm,local);

for(int 1=0; i<local.atom.size(); 1++)
calculateSingleScattererSolution(lsms,local.atom[1],vr[1],energy,prel,pnrel, solution[i]);

sendTmats(comm, local);
finalizeTmatCommunication(comm);

M OLCFeoeooeo RIDG

Calculating the tau matrix . — 1 — G, !¢

for(int 1=0; 1i<local.num_local; 1++)
calculateTauMatrix(lsms,local,local.atom[1],
energy,prel,&tau@@_1(0,1));

(1) For all local atoms (possibility for multithreading)
(a) build m matrix (m=I-tG) (multithreading or accelerator)
(b) invert m matrix (multithreading or accelerator)

(c))
T — [I — tGo]_ t
m has rank k * #L1Z and can be broken in k * k blocks mj;

my; — Iéw — tiGéj

in most cases only the diagonal block for the local site is needed

Too = (m_l)ooto

21 @@@0OLCFeeoee

Block Inverse

The LSMS method requires only the first diagonal block of the inverse matrix

Recursively apply

(A5 - (4=BDro]+

The block size is a performance tuning parameter:

e Smaller block size: less work
e Larger block size: higher performance of matrix-matrix multiply

Performance of LSMS dominated by double complex matrix matrix multiplication

ZGEMM

o &GOLCFe e e @

Main zblock_lu loop
BLAS: CPU, LAPACK: CPU

n=blk_sz(nblk)
joff=na-n
do 1iblk=nblk,2,-1
m=n
1off=joff
n=blk_sz(iblk-1)
joff=joff-n
c invert the diagonal blk_sz(iblk) x blk_sz(iblk) block
call zgetrf(m,m,aCioff+1l,10ff+1),1lda,1ipvt,1info)
Cc calculate the inverse of above multiplying the row block
c blk_sz(iblk) x 1off
call zgetrs('n',m,1off,aCioff+1,10ff+1),1lda,ipvt,
& a(ioff+1,1),1lda,info)
1f(iblk.gt.2) then
call zgemm('n','n',n,10ff-k+1,na-1off,cmone,a(joff+1,10ff+1),lda,
& a(ioff+1,k),1lda,cone,a(joff+1,k),1lda)
call zgemm('n','n',joff,n,na-10ff,cmone,a(l,10ff+1),1da,
& a(ioff+1,joff+1),1lda,cone,a(l,joff+1),1lda)
endif
enddo
call zgemm('n','n",blk_sz(1),blk_sz(1)-k+1,na-blk_sz(1),cmone,
& a(l,blk_sz(1)+1),1lda,a(blk_sz(1)+1,k),1lda,cone,a,lda)

v &&GSOLCFe e e @

Main zblock_lu loop
BLAS: CPU
LAPACK: CPU

do iblk=nblk,2,-1
call zgetrf(..)
call zgetrs(..)

call zgemm(...)
call zgemm(..)

enddo

call zgemm(...)

31 &&GOLCFeee e

Main zblock lu loop - GGD
BLAS: GPU (CUDA)
LAPACK: GPU (CULA device API)

call cublas_set_matrix(..)
do iblk=nblk,2,-1

call cula_device_zgetrf(..)
call cula_device_zgetrs(..)

call cublas_zgemm(..)
call cublas_zgemm(..)

enddo
call cublas_zgemm(..)

call cublas_get_matrix(..)

o &&GOLCFe oo o0

WL-LSMS3

* First Principles Statistical Mechanics of Magnetic Materials

* identified kernel for initial GPU work
— zblock lu (95% of wall time on CPU)

— kernel performance: determined by BLAS and LAPACK: ZGEMM,
/GETRS, ZGETRF

* preliminary performance of zblock_lu for 12 atoms/node of Jaguarpf
or 12 atoms/GPU

— For Fermi C2050, times include host-GPU PCle transfers

— Currently GPU node does noft utilize AMD Magny Cours host for

compute
Jaguarpf node |Fermi C2050 |Fermi C2050
(12 cores AMD |using CUBLAS |using Cray
Istanbul) Libsci
Time (sec) 13.5 11.6 6.4

o @&OLCFe e e

Slide provided by Cray

